1992年,USSR乌克兰基辅食品工业研究所,微生物技术专业,硕士学位;
2000年,美国密歇根州大学,遗传学专业,博士学位;
2000-2002年,美国昂飞公司Affymetrix Inc,博士后;
2002-2008年,美国昂飞公司昂飞实验室AffyLabs,一、二级、资深科学家;
2008-2010年,美国Helicos生物科技公司,基因组学,首席科学家;
2010-2014年,美国St. Laurent研究所,基因组学,科研总监;
2014-2023年,华侨大学医学院,华侨大学基因组学所所长,教授;
2023年,伟德BETVlCTOR1946,教授
B.S. 1992, Kiev Technological Institute of Food Industry, Microbiological technology;
Ph.D. 2000, Michigan State University, Genetics;
Postdoctoral Fellow, Affymetrix, Inc, 2000-2002;
Staff Scientist I,II and Senior Scientist, Affymetrix, Inc AffyLabs, 2002-2008;
Principal Genomics Scientist, Helicos BioSciences Corporation, 2008-2010;
Director of Genomics, St. Laurent Institute, 2010-2014;
Director of Genomics Institute, Professor, Huaqiao University, 2014-2023
Distinguished Professor, School of Life Sciences, Xiamen University, 2023
本课题组通过开发新方法(包括分子生物学新方法和生物信息学新方法)获得全基因组信息,并进一步解析和发现人类细胞中发生的复杂分子过程。我们的研究兴趣包括:
1. 非编码RNA的复杂性、机制和功能研究
Philipp Kapranov博士于2002年发表了世界上第一个关于人类基因组中存在非编码RNA普遍转录现象(即基因组“暗物质RNA”)的开创性工作,二十多年来开展了一系列关于非编码RNA的推动性研究。本课题组目前关注与人类疾病和发育相关的非编码RNA及其调控网络的发现、注释和功能表征。
2. 新型核酶的发现和表征
本课题组前期工作中通过开发高通量方法首次在人类极长基因间非编码RNA(vlincRNA)中发现全新类型的自切型天然核酶hovlinc,将继续关注人类和其他生物体中新型核酶的发现和表征。
3. DNA损伤基因组特征和模式研究
针对最常见但以往缺乏高通量检测技术的DNA损伤类型——单链断裂(SSB)和AP位点(AP),本课题组在前期工作中先后开发了首个可应用于人类的单核苷酸分辨率的SSB和AP的检测方法SSiNGLe和SSiNGLe-AP,将继续关注DNA损伤检测高通量方法的开发和应用,研究与衰老、癌症和其他人类疾病相关的DNA损伤基因组特征和模式。
Our research direction is to explore and discover complex molecular processes that occur in human cells using bioinformatic analysis of genome-wide information obtained by development of new molecular biological and analytical methods and approaches.
1. Understanding the complexity, mechanisms, and biological relevance of non-coding RNAs.
Dr. Philipp Kapranov Published the first groundbreaking work on the pervasive non-coding transcription in the human genome (the so-called “RNA dark matter”) in 2002, and carried out a series of follow-up seminal studies in the field. Currently, the group is focused on the discovery, annotation and functional characterization of non-coding RNAs and their regulatory networks, particular in the context of the human diseases and development.
2. Discovery and characterization of novel ribozymes.
Via development of a novel high-throughput method, we recently discovered a novel class of naturally occurring self-cleaving human ribozymes, hovlinc, located in a very long intergenic non-coding RNA (vlincRNA). We are currently focused on the discovery and characterization of novel ribozymes in humans and other organisms.
3. Understanding genomic characteristics and patterns of DNA damage.
This research group has successively developed the first single-nucleotide resolution methods SSiNGLe and SSiNGLe-AP to detect two common types of DNA damage, single-strand breaks and AP sites, and applied them to the human genome. We are currently focused on the development and application of high-throughput DNA damage detection methods to study the genomic characteristics and patterns of DNA damage related to aging, cancer and other human diseases.
代表性论文(# co-first author, * Corresponding author):
1. Cai Y, Cao H*, Wang F, Zhang Y, Kapranov P*. (2022) Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method. Nature Communications 13(1):5868 (期刊亮点文章).
2. Chen Y#, Qi F#*, Gao F, Cao H, Xu D, Salehi-Ashtiani K, Kapranov P*. (2021) Hovlinc is a recently evolved class of ribozyme found in human lncRNA. Nature Chemical Biology 17(5):601-607 (期刊专题报道Nature Chemical Biology “News & Views”《Hunting for human ribozymes》, Science Translation Medicine《Mysteries of human RNA》, Nature Middle East 《Finding fresh RNA enzymes in the human genome》).
3. Xu D, Tang L, Kapranov P*. (2022) Complexities of mammalian transcriptome revealed by targeted RNA enrichment techniques, Trends in Genetics S0168-9525(22)00313-4.
4. Cao H, Salazar-García L, Gao F, Wahlestedt T, Wu CL, Han X, Cai Y, Xu D, Wang F, Tang L, Ricciardi N, Cai D, Wang H, Chin MPS, Timmons JA, Wahlestedt C, Kapranov P*. (2019) Novel approach reveals genomic landscapes of single-strand DNA breaks with nucleotide resolution in human cells. Nature Communications 10(1):5799 (期刊亮点文章,2019年12月底仅发表一周时间就被期刊认证为Top 50 read articles of 2019).
5. Cao H, Wahlestedt C, Kapranov P*. (2018) Strategies to Annotate and Characterize Long Noncoding RNAs: Advantages and Pitfalls. Trends in Genetics 34(9):704-721.
6. St Laurent G, Wahlestedt C, Kapranov P*. (2015) The Landscape of long noncoding RNA classification. Trends in Genetics 31(5):239-251.
7. Kapranov P# *,Ozsolak F#, et al. (2010) New class of gene-termini- associated human RNAs suggests a novel RNA copying mechanism. Nature 466(7306):642-646 (co-first and co-corresponding author).
8. Cold Spring Harbor Laboratory: Fejes-Toth K#, et al.
Affymetrix: Kapranov P#, et al. (2009) Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs. Nature 457(7232):1028-1032 (昂飞实验室和冷泉港实验室联合发表ENCODE Transcriptome Project,co-first author).
9. Djebali S#, Kapranov P#, et al. (2008) Efficient targeted transcript discovery via array-based normalization of RACE libraries. Nature Methods 5(7):629-635 (co-first author).
10. Kapranov P, et al. (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484-1488.
11. Kapranov P, et al. (2007) Genome-wide transcription and the implications for genomic organization. Nature Reviews Genetics 8(6):413-423 (期刊封面文章).
12. Cheng J#, Kapranov P#, et al. (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308(5725):1149-1154 (co-first author).
13. Kapranov P, et al. (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296(5569):916-919.
荣誉、奖励及参加学术团体的情况:
国家基金外国资深学者项目(2021)
爱思维尔中国高被引学者(2021)
中国政府友谊奖(2018)
福建省荣誉公民(2019)
厦门白鹭友谊奖(2017)
Frontiers in Genetics 副主编
Annals of Human Genetics 客座资深编辑
ENCODE Consortium(2003-2012)
FANTOM 5 Consortium(2015至今)
福建省对外友好协会理事会理事(2020至今)