Qinxi Li

Post on: 2025-01-08Source: Life English Hits:

Qinxi LI, Ph.D.

Professor

Tel: +86-592- 2183839

E-mail: liqinxi@xmu.edu.cn


Education

1995, B.S. Med., Lanzhou Medical College

1998, M. Med. (Clinical Hematology), Lanzhou Medical College;

2001, Ph.D., Lanzhou University

 

Professional Experience

2001-2004, Assistant Professor, Xiamen University

2003-2005, Visiting Scholar, Hongkong University of Science and Technology

2004-2009, Associate Professor, Xiamen University

2009-present, Professor, Xiamen University

2010-2011, Postdoc fellow, University of Toronto

2017-present, vice dean, School of Life Sciences, Xiamen University

 

Research Area

1. Mechanisms underlying tumorigenesis driven by isocitrate dehydrogenase 1 (IDH1) R132H/Q mutations. IDH1-R132H/Q mutations are related to the generation and development of various tumors, in particular glioma. It has been well understood that it is the large amount of 2-hydroxyglutarate (2-HG) produced by these mutants that leads to tumorigenesis. However, the mechanism by which 2-HG results in tumorigenesis remains far to be clarified. We are working on the metabolic and apoptotic disorders caused by 2-HG, which may play important roles in 2-HG induced tumorigenesis.
2. The roles of metabolic alterations caused by proto-oncogene c-src in tumorigenesis and metastasis. One hallmark of cancer cell metabolism is Warburg effect, a metabolic alteration that even in the presence of oxygen, cancer cells predominantly produce energy by a high rate of glycolysis followed by lactic acid fermentation. This metabolic switch is essential for cancer cells to maintain survival, proliferation and mobility. c-src is an important proto-oncogene that encodes c-Src protein, the firstly identified tyrosine kinase. Excessive expression and/or activation of c-Src contribute to the generation and metastasis of various tumors. However, little is known about how c-Src regulates metabolism of tumor cells. One of our goals is to clarify the contribution of metabolic alterations caused by proto-oncogene c-Src to tumorigenesis and metastasis.
3. The roles of Glutaminase 1 (GLS1) in nutrient stress, tumorigenesis and organ development
GLS1, a key enzyme in glutamine catabolism, is considered as an important target for tumor therapy because it is excessively expressed in various tumor and functions to stimulated tumor proliferation. We find that upon glutamine deprivation, the structure of GLS1 is remodelled by the lower concentration of its product glutamate to stimulate its enzymatic activity which in turn leads to cell death. We are now engaged in the studies to clarify the roles of GLS1 in nutrient stress, tumorigenesis and organ development. We are also interested in screening small molecules showing strong anti-tumor activity by stimulating GLS1 activity.
4. The novel mechanisms underlying metabolic regulation by p53. Deficiency of tumor suppressor p53 is high correlated with the incidence of various tumors. p53 has been found participating in the suppression of Warburg effect, a hallmark of cancer. We focus on the regulatory effect of p53 on biosynthesis and lipid metabolism of cancer cells.

 

Selected Publications (*Corresponding author)

1.Jiang B, Zhang J, Zhao G, Liu M, Hu J, Lin F, Wang J, Zhao W, Ma H, Zhang C, Wu C, Yao L, Liu Q, Chen X, Cao Y, Zheng Y, Zhang C, Han A, Lin D, Li Q*. Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis. Molecular Cell 2022 May 19; 82(10):1821-1835.e6. doi: 10.1016/j.molcel.2022.03.016
2.Zhou Y, Lin F, Wan T, Chen Ai, Wang H, Jiang B, Zhao W, Liao S, Wang S, Li G, Xu Z, Wang J, Zhang J, Ma H, Lin D, Li Q*. ZEB1 enhances Warburg effect to facilitate tumorigenesis and metastasis of HCC by transcriptionally activating PFKM. Theranostics 2021 April 03; 11(12):5926-5938.  
3.Ma H, Zhang F, Zhou L, Cao T, Sun D, Wen S, Zhu J, Xiong Z, Tsau M-T, Cheng M-L, Hung L-M, Zhou Y, Li Q*. c-Src facilitates tumorigenesis by phosphorylating and activating G6PD. Oncogene 2021 March 08; 40:2567–2580.
4.Ma H, Zhang J, Zhou L, Wen S, Tang HY, Jiang B, Zhang F, Suleman M, Sun D, Chen A, Zhao W, Lin F, Tsau MT, Shih LM, Xie C, Li X, Lin D, Hung LM*, Cheng ML*, Li Q*. c-Src Promotes Tumorigenesis and Tumor Progression by Activating PFKFB3. Cell Rep. 2020 Mar 24; 30(12):4235-4249.e6.
5.Suleman M, Chen A, Ma H, Wen S, Zhao W, Lin D, Wu G*, Li Q*. PIR promotes tumorigenesis of breast cancer by upregulating cell cycle activator E2F1. Cell Cycle. 2019 Nov; 18(21):2914-2927.
6.Jiang B, Zhao W, Shi M, Zhang J, Chen A, Ma H, Suleman M, Lin F, Zhou L, Wang J, Zhang Y, Liu M, Wen S, Ouyang C, Wang H, Huang X*, Zhou H*, Li Q*. IDH1 R132 mutant promotes tumor formation through downregulating p53. J. Biol. Chem. 2018 Jun 22; 293(25):9747-9758
7.Yang Z, Jiang B, Wang Y, Ni H, Zhang J, Xia J, Shi M, Hung L-M, Ruan J, Mak TW, Li Q* and Han J*. 2-HG Inhibits Necroptosis by Stimulating DNMT1-Dependent Hypermethylation of the RIP3 Promoter. Cell Reports. 2017 May 30; 19(9): 1846-1857.
8.Jiang B, Zhang J, Xia J, Zhao W, Wu Y, Shi M, Luo L, Zhou H, Chen A, Ma H, Zhao Q, Suleman     M, Lin F, Zhou L, Wang J, Zhang Y, He Y, Li X, Hung LM, Mak TW, Li Q*. IDH1 Mutation Promotes Tumorigenesis by Inhibiting JNK Activation and Apoptosis Induced by Serum Starvation. Cell Reports. 2017 Apr 11; 19(2): 389-400.
9.Zhang J, Wang S, Jiang B, Huang L, Ji Z, Li X, Zhou H, Han A, Chen A, Wu Y, Ma H, Zhao W, Zhao Q, Xie C, Sun X, Zhou Y, Huang H, Suleman M, Lin F, Zhou L, Tian F, Jin M, Cai Y, Zhang N, Li Q*. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Nature Communications. 2017 Jan 5; 8:13732.
10.Inoue S, Li WY, Tseng A, Beerman I, Elia AJ, Bendall SC, Lemonnier F, Kron KJ, Cescon DW, Hao Z, Lind EF, Takayama N, Planello AC, Shen SY, Shih AH, Larsen DM, Li Q, Snow BE, Wakeham A, Haight J, Gorrini C, Bassi C, Thu KL, Murakami K, Elford AR, Ueda T, Straley K, Yen KE, Melino G, Cimmino L, Aifantis I, Levine RL, De Carvalho DD, Lupien M, Rossi DJ, Nolan GP, Cairns RA, Mak TW. Mutant IDH1 Downregulates ATM and Alters DNA Repair and Sensitivity to DNA Damage Independent of TET2. Cancer Cell. 30(2): 337-48. 2016, Aug 8.
11.Liu Q, Cheng Z, Luo L, Yang Y, Zhang Z, Ma H, Chen T, Huang X, Lin S-Y, Jin M, Li Q*, Li X*. C-terminus of MUC16 activates Wnt signaling pathway through its interaction with β-catenin to promote tumorigenesis and metastasis. Oncotarget. 14; 7(24): 36800-36813. 2016, May 5.
12.Xu M, Cai C1, Sun X, Chen W, Li Q*, Zhou H*. Clnk plays a role in TNF-alpha-induced cell death in murine fibrosarcoma cell line. Biochem Biophys Res Commun. 463(3): 275-9. 2015, Jul 31.
13.Ying He, Guili Lian, Shuyong Lin, Zhiyun Ye, Qinxi Li*. MDM2 Inhibits Axin-induced p53 Activation Independently of Its E3 Ligase Activity. PLOS ONE, 8(6): e67529. 2013, Jun 27.
14.Guo HL, Zhang C, Liu Q, Li Q, Lian G, Wu D, Li X, Zhang W, Shen Y, Ye Z, Lin SY, Lin SC. The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation. Cell Res. 22(8): 1246-1257. 2012, Apr.
15.Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Liu Q, Ruan K, Wang Z, Zhang CS, Chien KY, Wu J, Li Q, Han J, Lin SC. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science. 336(6080): 477-81, 2012, Apr 27.
16.Li Q, He Y, Wei L, Wu X, Wu D, Lin S, Wang Z, Ye Z, Lin SC., AXIN is an essential co-activator for the promyelocytic leukemia protein in p53 activation. Oncogene. 30(10): 1194-1204, 2011.
17.Li Q., Lin S., Wang X., Lian G., Lu Z., Guo H., Ruan K., Wang Y., Ye Z., Han J. and Lin S.-C., Axin determines cell fates by controlling p53 activation threshold upon DNA damage. Nature Cell Biology. 11(9): 1128-1134, 2009.
18.Li Q.,*, Ye Z., Wen J., Ma L., He Y., Lian G., Wang Z., Wei L., Wu D. and Jiang B., Gelsolin, but not its cleavage, is required for TNF-induced ROS generation and apoptosis in MCF-7 cells. Biochem. Biophys. Res. Commun. 385(2): 284-289, 2009.  
19.Zhan, Y., Du, X., Chen, H., Liu, J., Zhao, B., Huang, D., Li, G., Xu, Q., Zhang, M., Weimer, B.C., Chen, D., Cheng, Z., Zhang, L., Li, Q., Li, S., Zheng, Z., Song, S., Huang, Y., Ye, Z., Su, W., Lin, S.C., Shen, Y. and Wu, Q., Cytosporone B is anagonist for nuclear orphan receptor Nur77. Nature Chem. Biol. 4(9): 548-556, 2008.
20.Li, Q., Zhang, N., Zhang, D., Wang, Y., Lin, T., Wang, Y., Zhou, H., Ye, Z., Zhang, F., Lin, S.C. and Han, J., Determinants that control the distinct subcellular localization of p38α-PRAK and p38β-PRAK complexes. J. Biol. Chem. 283(16): 11014-23, 2008
21.Li, Q., Wang, X., Wu, X., Rui, Y., Liu, W., Wang, J., Wang, X., Liou,Y.-C., Ye, Z. and Lin, S.C., Daxx Cooperates with the Axin/HIPK2/p53 Complex to Induce Cell Death. Cancer Res. 67(1): 66-74, 2007
22.Lin, S.-C. and Li, Q.X., Axin bridges Daxx to p53. Cell Res., 17: 301-302, 2007, Apr.
23.Zou, H., Li, Q.*, Lin, S.C., Wu, Z., Han, J. and Ye, Z.*, Differential requirement of MKK4 and MKK7 in JNK activation by distinct scaffold proteins. FEBS Letters  581(2): 196–202, 2007.
24.Li, J., Li, Q.*, Xie, C., Zhou, H., Wang Y., Zhang, N., Shao, H., Chan, S.C., Peng, X., Lin, S.C. and Han, J. *, beta-actin is required for mitochondria clustering and ROS generation in TNF-induced, caspase-independent cell death. Journal of Cell Science 117: 4673-4680, 2004.
25.Rui, Y., Xu, Z., Lin, S., Li, Q., Rui, H., Luo, W., Zhou, H., Cheung, P., Wu, Z., Ye, Z., Li, P., Han, J. and Lin, S.-C., Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J. 23, 4583-4594, 2004, Nov 24.